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ADAPTIVE CANCELLER LIMITATIONS
CAUSED BY I,Q MISMATCH ERRORS

I. INTRODUCTION

An adaptive canceller combines auxiliary channels of data with a main channel of data in such a
way so as to minimize the main channel output noise power residue. Hence, an effective way of
eliminating unwanted data (or noise) from a main channel (the information channel) is by inputting
correlated data from auxiliary channels. Mismatch errors of any kind between channels of an adap-
tive canceller can cause a reduction in the achievable cancellation ratio. These mismatch errors can
include small time-delay differences, in-phase (I) and quadature-phase (Q) imbalances, sampling
errors, and filter frequency mismatch errors among the various channels. For a radar or communica-
tions digital canceller, many of these errors occur because of the radio frequency (RF)-to-intermediate
frequency (IF)-to-baseband-to-sample and hold (S+H)-to-analog-to-digital (A/D) chain that is present
in each channel as illustrated in Fig. l(a). If any link of this chain is not identical among the chan-
nels, mismatch errors cause the canceller performance to degrade.

This report is an extension of Ref. 1 in which the effects of IF filter mismatch errors on adap-
tive cancellers were investigated. In this report, the effects of I,Q phase and amplitude quadrature
errors and low pass filter (LPF) mismatches on adaptive cancellation performance are examined. We
also briefly discuss the effects of cascading mismatched IF and I,Q filters. Additional research in this
area can be found in Refs. 2 and 3.

To compensate for frequency mismatch errors, adaptive digital transversal filters are often
inserted into the auxiliary channels. Figure l(b) illustrates a two-channel compensated adaptive can-
celler. Here, we have two signals yM(t) and YA(t) inputted to the main and auxiliary channels,
respectively. These signals may be at RF or IF. Each signal is quadrature detected into I and Q
components through a double mixer operation. Thereafter, each I and Q component is passed through
a low pass filter to eliminate upper band components while retaining the baseband information. The
four resulting channels are sampled every T seconds and converted into digital form.

Errors occur in the mixer operation in the form of amplitude and phase perturbations, i.e., the
amplitude and phases of each mixer may not be identical. In addition, mismatch errors occur in the
synthesis of the LPFs. Normally, these are designed to be identical but because of inaccuracies in the
synthesis process, the LPFs are rarely identical.

To compensate for this mismatch, an adaptive transversal filter (or a tapped delay line) is often
inserted into the auxiliary channel, and weights w, n = 1, 2, ... , N on these taps are adjusted so
that the output noise power residue of v (t) (see Fig. 1(b)) is minimized. Note that the tap time delay
T is normally less than the Nyquist sampling interval 1/B, where B is the input signal's bandwidth
(includes + frequencies). In addition, the main channel is delayed such that the auxiliary samples are
time-centered.

Manuscript approved December 8, 1988.
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Fig. 1(a) - RF-to-IF-to-baseband-to-digital conversion chain for the main and auxiliary channels

RESIDUE

Fig. I(b) - I,Q conversion and adaptive transversal filter compensation

If we define w = (wI, w2 , ... , WN)T to be the optimal complex valued weighting vector, where
T denotes the transpose operation, then it can be shown [2] that w is the solution of the vector equa-
tion:

Rw = r, (1. 1)

where R is the covariance matrix of the time-delayed taps in the auxiliary channel and r is the cross
covariance vector between the auxiliary taps and the time-centered main channel. More formally

and

R = Efx* xTI

r = Ejx* xmI,

(1.2)

(1.3)

2
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where El I denotes the expected value, * denotes the complex conjugate, and x = (xI, x2 , .. ., XN)T

is the vector of time-delayed signals in the auxiliary channel.

To completely understand the effects of the frequency mismatch errors, the statistical charac-
teristics of the input signals in the main and auxiliary channels must be known. However, this may
not be possible in many instances. We have chosen to characterize and investigate the effects of the
frequency mismatch errors on cancellation when the adaptive canceller is in the self-cancellation
mode. Here, we tie the main and auxiliary inputs together and input a wideband signal. We then
calculate first order error expressions for the output cancellation power residue. Thus the self-
canceller mode yields best case (or an upper bound on) cancellation performance.

This report is laid out as follows: The phase and amplitude quadrature error model and the LPF
error model are presented in Section II. A "separation principle" that allows us to separate the phase
and amplitude errors from the LPF errors is described in Section III. Expressions for these errors are
developed in Sections IV to VI and are further discussed in Section VII. In Section VIII, we briefly
consider the canceller performance of cascaded mismatched IF and I,Q filters.

Other types of RF-to-digital I,Q conversion errors also limit cancellation but are not considered
here. Among these are I and Q sampling/strobing errors (fixed offset and random), DC bias, non-
linearities, and intermods.

II. I,Q CHANNEL ERROR MODEL

This section presents the model to be used to characterize the phase and amplitude quadrature
errors and the LPF mismatches. We begin with the phase and amplitude errors. Figure 2 shows a
quadrature detection model for a given channel (main or auxiliaries). Assume small (much less than
one) and constant I and Q amplitude errors ai and aq, and phase errors Oi and Oq (the subscripts or
superscripts i and q are used to denote the respective I and Q errors). If we denote the baseband I
and Q terms before low pass filtering as i'(t) and q'(t), respectively, then it is straightforward to
show that

i'(t) Ell E12 i i(t)
q'(t) | 02 + LE21 E22 q JL(t) (21

where 12 is the 2 x 2 identity matrix, i (t) and q (t) are the mixer inputs, and

Ell = (1 + ai) cos hi - 1,

e 12 = -(1 + ai) sin Bi,

E2 1 = (1 + aq) sin Oq' and (2.2)

E22 = (1 + aq) COS q - 1.

3
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(1 + ai )COS(Coot + qj)

i(t)coswot + q(t)sin wot

(1 + aq)sin(wot + 0q)

Fig. 2 - I,Q detector

Define the I,Q perturbation matrix E as

E C-12 ]
E = l.

E21 E22 

Note that El,, E12 , E2 1 , e2 2 <

errors.
< 1. Figure 3 further depicts the IQ amplitude and phase quadrature

i(t)

q(t)
+ (22

i'(t)

q'(t)

Fig. 3 - Model of I,Q quadrature errors

The LPF mismatches can be modeled by using a first order pole/zero error model that was first
introduced in Ref. 1. We assume that all LPFs are designed to some desired LPF that has a fre-
quency transfer function (FTF) denoted by H(jw). However, because of errors in the synthesis pro-
cess, the poles and zeros of H(j7) are not as designed and have small perturbations around the
desired poles and zeroes (Fig. 4). We assume that the designed filters are realizable so that all poles
(unperturbed and perturbed) lie in the left-hand complex plane. This restricts the probability density
function (p.d.f.) of the magnitude of the perturbation in that if X is the maximum real part of any
unperturbed pole, then the domain of the p.d.f. is bounded by I X 1, where I - I denotes the magnitude
operation. These perturbations are assumed to be small enough that we can use first order approxi-
mations for the filter responses in the main and auxiliary channels.

It is important to note that because the LPFs are at baseband, the poles and zeros of the FTF
must appear in conjugate pairs. Hence it follows that the errors of a given pole or zero must also be
conjugate pairs.

4

-i'(t)

q "(1)
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Fig. 4 - Pole with perturbation

Assume that real and imaginary parts of each perturbation are statistically independent and ident-
ically distributed zero mean real random variables. Also, assume that the perturbation each on conju-
gate pair is a statisically independent and identically distributed random complex variable. The vari-
ance of the magnitude of each perturbation is denoted by oj2.

We assume that the desired FTF is a ratio of polynomials such that

H(jw>) = P(jw ) (2.4)

where P( ) and Q( ) are polynominals of order m and n, respectively. Consider the Laplace
transform representations of P(jcv) and Q(jco): P(s) and Q(s). Let s1(P),?), . . ,s(P) be the roots
of P(s), and let sfq),s 2q) ,s(q) be the roots of Q(s). Therefore P(ci) and Q(¢oX) can be
expressed as

P(7 ) = (ij - S ) ** (j & S- ) (2.5)

and

Q (J W) = U o s - Sfq) (. co - S q))* (2.6)

Consider just P(jo,). Let each root sk(P), k = 1,2,...,m be perturbed by a small amount,
Ask(P). Then the numerator polynomial is actually P (Jw), where

P(I a) = (j7W - s As P).) . -( U - As jp)). (2.7)

5
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We assume that no roots of P(s) and Q(s) lie on or are arbitrarily close to the jw axis. This
assumption allows us to write an expansion of P(jw) and Q(jw) that does not have any singular
points. If we expand Eq. (2.7) and retain only the lower order terms, then

p(7w) = (1w - sI(P)). .( W - S (0)

m
-S (1w a sf. .) (1 Sk - lkQ i) (Jw - Sk + ) . .w .( Sm ) Ask(P) (2.8)

k =I

= (1w - 5fP)).* - SAf')) -1 k1 Esk(P)

Jo, m ' Sk(P )

P (1wc)I -k= A P)| k = I j JW - Sk() 

Similarly, it can be shown that the denominator polynomial when perturbed has the form

(1) Q(iW) I- n= 1Aq (2.9)Q~ ~ U co =E .(q ) L k = I iW - Sk q_ 2.9

Therefore, the perturbed FTF has the form

m Ask(pD)E - S kP

H(11)= (2 .10)P ~~~k = I CO ° Sk
- 5~q)

or

-Ft~n (q) m sk 1
(ico= H (i w)k-Ij@ Sk- I E A Sk E (2 .11 )H(1w) H(1w) k~=1 jW -- -k( k=1 JW Sk 2.1

where we have retained only the lower order terms.

Rewrite Eq. (2.11) as

H(1w) = 1(1w) [1 + E * (2.12)

6
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where we have set

Ask = -Ask j)

Sk = Sk(P) j k = 1,2,...,m

ASm +k = MAusk

Sm +k = Skq) j k = 1,2,...,n.

(2.13)

(2.14)

As previously mentioned, we assume that H(')9 H2), HA(i), and HA ) are designed to be matched

to H(jw), but because of inaccuracies are not equal to H(1w). The first order pole/zero error model
is used to express

JIM (j cw) = H (1 w)

HE) (1 w) = H(Jw)

HA(') (7 co) = H(Jw)

and

FL m AS (M) 

F m~=1 jW - sm j

1

Il

1

m=1

M~=1

(Ml)
-As

J mjw SM

(A)

-ASm'

jW - s

(Aq)
CAS) m

where M is the number of poles and zeroes of H(jw), and m is now an index. The parameters
M o r d e r i n g o f t h e p o l s a n d o f H e ' ' a n d ( A ) ( A l )SM , m = 1, 2, . .. , M are some ordering of the poles and zeros of H(jwc), and ASm , AS m )

A\smi, and Asm q are the perturbation of the poles and zeros of HM) (Jw), H ) (iw), A (1w), and
H1,q)(1 w) respectively. These perturbations are assumed to be independent from LPF to LPF. We set

7
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(2.15)

(2.16)

(2.17)
1

(2.18)
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H (q) (j co) = H (i co)
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AH11 )(JW) =

AH,,H ) (1 w) =

AHAV) U CO) =

(Al)
M ASm

m-I jw S-

(Al)
M ASmr

rn1 jw - Srn

Al As(Ai): 'Asm 

mr- jw J Sm

and

M
HAHq))(')= =

m =l

(A,)

jw -r Sm

Thus, the first order approximations of the perturbed LPFs are

Hm1') (1 w) = H1(1w) (1 + AHk) (jw)),

Hp4)(Jw) = H(1w) (1 + AHmq)(1w)),

HAI)(1w) = H(Jw) (1 + HAV) (w)),

and

HFq)ie er ) = H(J c) ( l + nHA(q)(ow))

Finally, we depict the I,Q channel error model with canceller as shown in Fig. 5.

AMPLITUDE AND
PHASE QUADATURE

DISTORTION

Fig. 5 - Self-cancellation model
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III. SEPARATION PRINCIPLE

In the next few sections, an approximate (or first order) expression for the output noise power
residue after cancellation in terms of the variance of the mismatch errors is derived. In this section,
we prove a "separation principle" whereby we show that this error is the sum of residue terms each

computed with respect to one given error; i.e., we set all errors equal to zero except one when com-
puting a given error term.

This separation principle actually follows from a Taylor series expansion of the output noise
power residue as a function of the various mismatch errors. Let Roo be the covariance matrix of aux-
iliary data (with time taps), let roo be the cross correlation vector between the main channel and the
auxiliary's time taps, and let P-(n) be the input power of the main channel with Roo, roo, and P.(n) cal-
culated with no channel errors. Let Pk, k = 1, 2, ... , K represent a set of channel errors assumed
to be zero mean and independent. We can write the output power residue Pout averaged over the
channel inputs as a function of Roo, roo, p), and Pk:

Pout = F(Rw, roo, P{,) p)X (3.1)

where p = (Pr, P2, * * * . PK)- In all practical cases, Pout is an analytical function of Roo, ro, PP)
PI, P2, ... , PK with no singular values so that its functional representation can be expanded by using
a multidimensional Taylor series:

K

Pout = F(Roo, roo, Pg), 0) + Flk (ROO, rOo, P V) )Pk
k=1

K
+ E F2k(Roo, roo, PPn)) I Pk 12 + O(cross,A3), (3.2)

k =O

where Flk (Roo, roo, P.(n)) and F2 k (Roo, roo, P.(n)) are the first and second order partial derivatives,

respectively, of F(Roo, ro(, PIn)) with respect to Pk and evaluated at p = 0. O(cross,A3) represents
cross terms between the Pk, k = 1, 2, ... , K and/or higher order terms.

If Pout is averaged over the channel errors and only the first order variance terms are retained,
then

K
Pouta) = Eerrors [Pout} = F(Roo, roo, P-0), 0) + E F2k(Ro, r Pi°)) oi, (3.3)

k=1

where uk2 = E[ Ik 1 21 is the variance of the kth error. Equation (3.3) exemplifies the separation
principle since each F2k(Roo, roo, P,)), k = 1, 2, . .. , K is computed independently of other pertur-
bation errors.

Thus with respect to the I,Q mismatch errors, we first compute an error term for the output
noise power residue that results from the LPF mismatches while setting the I,Q phase and amplitude
quadrature errors equal to zero. Thereafter, we compute an error term for the I,Q phase and ampli-
tude errors while setting the LPF errors to zero. The sum of these two errors is the first order error

approximation of P (aye)* 9
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The inverse cancellation ratio can be computed in the same manner if we assume the
F(R.J1 , roo, P{0), 0) = 0 (which is the case in the self-cancellation mode). To see this we define the
inverse cancellation ratio as

p (ave)

CR 1 ou(ave) (3.4)

Note that pave) = p (O,ave) + A, where P{(1 ,ave) is the average input power in the main channel
without errors, and A represents a small error term caused by the channel mismatch perturbations. If
F(Roo, roo, Pl°)) = 0 and Eq. (3.3) is substituted into Eq. (3.4), then

K

EF2k(Roo, roo, Pin ))ok
CR 1 k=1 (3.5)

p•(Oave) + A
in

= p(Oave) E F2k(Ro, roo, PlF )ck (P(Oave)\2 EF2k(Roo, ro, P/())ak + 0(A2 ).
in k_ in )k=1

Note that all terms other than the first are second order terms so that a first order approximation of
CR-I is

K
CR- = E F2 k(Roo, roo, Pf(0°)) ok2. (3.6)

k =1

Again the separation principle holds when computing the inverse cancellation ratio.

IV. FREQUENCY MISMATCH ERRORS

In this section, a first order expression is derived for the output noise power residue that results
from having LPF frequency mismatch errors only. We use the self-cancellation configuration seen in
Fig. 5. Here, i(t) and q(t) are assumed to be identically distributed and independent real noise
sources. The noise spectrum Sj (w) and Sqq (w) of the I and Q noise sources is assumed to be white so
that Sij(w) = Sqq(w) = 1 for all w. For this analysis we assume that the number of delay line taps N
is an odd integer.

From Fig. 5, the output residue voltage v(t) can be expressed as

V(t) = XM(t) - WTX(t). (4.1)
If we set

Pout = Et I V(t) 121 (4.2)

and

Pin = El I XM(t) 1 21, 43

10
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where Pout and Pi, are the output and input noise powers, respectively, then it can be shown [2] that

Pout = Pin - w'Rw, (4.4)

where R is defined by Eq. (1.2) and w is the vector solution of Eq. (1.1). In fact, by using Eq.
(1.1), we can show that

Pout = Pin - r'R-1 r, (4.5)

where t denotes the complex conjugate transpose operation. The inverse cancellation ratio (or noise
attenuation factor) Pout/Pin can then be expressed by

Pout Pin - r'R-lrP1p = r R . (4.6)
Pin Pin

Note for the self-canceller that Pout/Pin = 0 if HA(')(1w) = HM)(1w) and HA(q)(iw) = HV)(iW).
We show this as follows. If the main and auxiliary inputs are identical, the optimal weighting wo for

the self-canceller is

N + I
2 position

wo= (0 0 ... 1 0 0 ... O)T. (4.7)

This is due to the fact that

XN±+1(t) = XM(t), (4.8)

where we have set

N2 2N- (4.9)
2

Hence, we simply subtract the N2th output of the transversal filter seen in Fig. 5 from the output of
the time delay element in the main channel to yield zero output noise power residue. As a result, if
roo and Roo are the cross covariance vector and covariance matrix under these ideal conditions (per-
fectly matched filters), then

N + 1
2 position

RTOlrOO = wo = (O0 1 0 ... o)T. (4.10)

The result of Eq. (4.10) is used to simplify many of the expressions in the upcoming derivations.

11
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Expressions for the elements of RO( and roo are easily derivable. It can be shown that if RW nrn

is the nm th element of the matrix Roo, then

Roo,,n = 2aS__ IH(jw) j 2 ejw7rBT(n -m)dw, n, m = 1,2,... ,N

where the factor of two on the above expression results from adding the identical I and Q contribu-
tions, and a is some nonzero proportionality constant. In fact, in the following discussions we arbi-
trarily set a = 1 because we will be dealing with ratios of powers, which implies that none of the
outputs calculated will be a function of a. Note that we have normalized the angular frequency to the
desired angular bandwidth 7rB, where B is the frequency bandwidth of the desired FTF, H(jw).
Similarly, if roo , is the nth element of ro, then

= 2 1w j)e 7rBT(n -N,)rOO',n = 2t_ IH (jw)1 e - dw, n = 1, 2, ... ,N.

To be consistent with the notation of Ref. 1 from which this report derives, we define Ro and ro
(which are quantities used in Ref. 1) in terms of RDO and roo, respectively

Ro = I Roo
2

and

1
ro = 2 roo

The elements of the inverse of Ro are defined as

Ro- l= (Ronm)) n, m = 1,2,... ,N. (4.13)

Expressions for the elements of R and r are given by

Rnrn = I HAi CO) 1 2 co@rBT(n -m)
R, =I- 00e dc

+ Jr_ JH1q) () 1 2 e j( ,,BT(n -m)dw, n, m = 1,2,...,N (4.14)

and

OD j=)rBT(n -N2) dw
-n I c *cwH~)jjed

+ i _ HA(q) *(, HCO) jw1) eJ~BT(flN2)d w n = 1,2,... ,N. (4.15)

Note that the expressions for Rnn and rn can be divided into the sum of individual I and Q contribu-
tions because of the independence of i(t) and q(t). This property is used in the forthcoming develop-
ment.

12
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If we use the first order approximations of HM')(jw), H2q)(jw), HA')(jw), and H~q)(jCo) given by
Eqs. (2.23) to (2.26) respectively, by using Eqs. (4.14) and (4.15) we can show that

Rnm = Ronm + ARn(mi) + AR (q) n,m = 1,2,... ,N (4.16)

and

rn = roo,, + Arn(i) + Arnq, n = 1,2,... ,N

where

AR (i~)_= 1I I 2 (Aj1~i)+AHAJi)*)ejicrBT(n-m)dc + c 12 IA11Ai)I2 eJ@'rBT(nm)dw (4.18a)

00
ARn(m) = I _ |1 H 12 (AHq) + HA(q)*) ejicrBT(n - m)do,

co
+ ,_O J HJ 2 1 AHA(q) 1 2 ej,,,rBT(n - m) d,,, n, m = 1, 2, . . ., N (4.18b)

and

Ar( -) = c | H 2 (AIIi)* + AwH^))ejc1rBT(n -N dw

+ 5i I H 12 AH(i)* AIH1) ejw7rBT(n -N 2 ) dw

Arnq) = I H 1 2 (AHA(q)* + I1,P)) ejw;wBT(n - N 2) dw

+ 5 0 I H1 2 Ajjjq)* A"J~) e (iorBT(n - N2) dw,

Furthermore, if we define

n = 1,2,...,N.

_ p(O) + AAP i)Pin = Pi(n) + APi(n) in P

where Pi0) is the input power when there are no perturbations, then it can be shown that

co cc
AP"i) =-I IHI 2 (AH,) + AH *)dc + I HI 2 IAH) I2dw

and

Ap(cq) = Ir_. I H 12(HP) + ±Hi )*)dw + I I H 1 2IAH,1l 2 dw. (4.2 lb)

We set

Ar = Ari + Arq,

AR = AR, + ARq,

13
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and

APin = APIn+ AP) (4.24)

where

Ari = (Ar(i), ArVi), ArP)T, (4.25)

Ar. = (Arfq), . . . , Ar$q))T, (4.26)

ARi = (AR(')), n, m = 1, 2, ... N, (4.27)

and

ARq = (ARn,,)), n, m = 1, 2, ... ,N. (4.28)

We rewrite the output power residue given by Eq. (4.5) in terms of the perturbations given by
Eqs. (4.22) to (4.24):

Pout = PA) + APin - (roo + Ar)' (Roo + AR)-' (roo + Ar). (4.29)

Note that the AR matrix is Hermitian Toeplitz. A second order approximation of (ROO + AR)-' is
used. This can be shown to be

(Roo + AR)Y = R~O' - R&oARR,;O + R~o ARR61 ARRh; . (4.30)

If Eq. (4.29) is expanded and only the second order and below perturbation terms are retained, then

Pout = PfO) + APin - rlR&Sroo - Ar'R( 1roo - rifeAr

- Ar'R,51Ar + rtoRlk \ARR,1roo + Ar'R,;ARR6 1i^r

+ roR 1 ARR5O-'Ar - rOR~1 ARRl~ ARR,'lroo. (4.31)

Note that an immediate simplification of Eq. (4.31) results because

p(On) - rRIr 0o = 0. (4.32)

The output noise power Pout is averaged over the identical zero mean probability density functions
(p.d.f.'s) of the pole and zero perturbations to obtain an average cancellation residue. Since the
p.d.f.'s are zero mean, it follows immediately that

14
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E[Ar'R0Olrooj = 0 (4.33)

and

EtrotR,0 1 Ar = 0. (4.34)

If we substitute Eqs. (4.22), (4.23), and (4.24) into Eq. (4.31) and take the expected values over
the pole/zero perturbation errors, then all of the i and q cross terms are zero or of second order
because these errors are zero mean and independent. It can be shown that

EtAr'R00QAr} = IEtAr,'R0- 1Arj} + I EIArHR0 Arq) (4.35)
2 2 qq

E~r&00R /1ARR~00r00j = E r*R0 1 AR R,,y'r0 } + Efr*R 4 71ARqRO'r 0 } (4.36)

EfArtRP~O-ARRP~'rl = I12 ±EI q A qj (.37

-=2 Ar,'R 1 AR-R,0 1r0} + 2 E[Ar'R0-'ARqj (4.37)

EfrOR&S1ARRoo'ArI = E [(Ar'Rj-lARR- Lro)'t} (4.38)

Ek00R00 ARRO0 ARRC0'r00} = IE fr* 1AR1 R0R AR1 R0 r0}
2

+ 2 Ejr*RO-'ARqR7-1 ARqR5-ro) + second order term. (4.39)

By using the results from Appendix A of Ref. 1, it is straightforward that

E1P I(') I = E{APq) j = 0 2 QF1 (4.40)

EtArfR0-'Ari) = EtAr'R0- 1Arq) = 2u2F 2 (4.41)

E~r6R0 IAR1 R0 1 ro = Eft0R0 'A\RqR? rol = O2QF1 (4.42)

E[ArKR7ARjRo7 1 ro} = E[Ar'Ro TARqR0 Iro} = UJQF2 + 19QF 2 * (4.43)

Eir*R§ 1 ARiR§1 Ari} = Ejr*R6-ARqR§ lArq} = O]2Qr2 + UI2 QF3 (4.44)

Ek0R0 1ARjR6 'ARjR(T'r0} = E r*6- 1ARqR0- 1ARqRD-'r0} (4.45)

= 2aF20r2 + O2QIF3 + al2Q 3

15
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where aJ2Q is the variance of the magnitude of the pole perturbation,

l =E I H 12d
I -c 11 - Si 12

Al N N Fkrn) cc I 1112ejwrBT(N2-k) dw
]F 2 = E R6 5 0 jW-S

i=1 k=I m=1 L cc j -si

cc I H 12 ej.wrBT(m -N2)

-co -jW - Si ]
and

co

R ~km) 5S cc

I H 12 jecorBT(N 2-k)

j() - Si dw

XO I H 12 eji-KBT(m -N 2 )

oI j 0 SM - dw.jw0 - SMl-i

Note that rF and r 2 are real, and the r 3 term results from the fact that ASM =

I or Q LPF.

We define P (...e) to be Pout averaged over all the LPF perturbations. By
of Eqs. (4.40) to (4.45) into Eq. (4.31), it can be shown that

ASM-M for either the

substituting the result

p (ave) - - 2out -(r - 2r 2 ) IQ . (4.49)

Note that the F3 term does not appear in the expression for P (aue) . Examining Eq. (4.6), we see by
use of the above results that P (,,e) /Pin is proportional to 0

1Q and that the constant of proportionality
in the first order approximation does not change if we set Pin = Pi°). We arbitrarily set

cc IH(1w)1 2dw = I (4.50)

so that P,(°) = 2. Thus

p (ave) 1p.
out inou = 21F1 - rF2.

2
CYIQ

(4.51)

Now, 2(rF - r 2) equals the cancellation-filter mismatch ratio (CFMR) (see Eq. (3.38), Ref. 1),
which is a measure of cancelling just the I (or Q) auxiliary channel against the main I (or Q) channel.
Hence Eq. (4.51) is rewritten as

16
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M

F3 = E
i =I

N N

k=1 m=1

(4.48)
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Pout) /Pin =1 CFMR + r7 (4.52)
2 2

0UhQ

1 Al~~ cc JH 2 dw
2 CFMR + E _ Si I"2cc

We define

IQMF = M 00 -c 1 -l 2 (4.53)

to be the I,Q mismatch factor so that

p (ave) Pin 1

2u i - CFMR + IQMF. (4.54)
GJQ1 2

It turns out that CFMR can be made arbitrarily small by adjusting N and BT. However, IQMF,
which is independent of N and BT, cannot. We discuss this further in Section V.

V. A SPECIAL CASE: THE BUTTERWORTH FILTER

In this section the IQMF is evaluated for the case when the desired transfer function is a Butter-
worth filter. This filter is of much interest because it is easily synthesized and is a low pass filter
with the attenuation of the skirts controlled by the order of the filter.

This filter has the following magnitude-squared angular frequency response:

I H(iw) 12 1CO w2 (5.1)

where M defines the order of the filter, the angular frequency has been normalized to the desired
angular bandwidth 7rB, and

CO = - sin 2. (5.2)
7r 2M'

The constant co has been chosen so that Eq. (4.50) is satisfied. Curves of the Butterworth filter
response are shown in Fig. 6 for various values of M. Note, that by increasing M that the skirts of
the bandpass filter become more attenuated.

The filter is synthesized by finding an H(s) function whose poles are in the left-hand side of the
s-plane such that

H(s)H(-s) I s = Jo) I H(iw) 1 2. (5.3)

17



KARL GERLACH

IH(j,) 12
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(I', ,/6 < r l)

Fig. 6 -Butterwvorth filter response

Now the poles of I H(jw) 12 can be shown to lie on the unit circle and are spaced equally in angle as

illustrated in Fig. 7 for M = 3. Hence to find H(s), the M left-hand plane poles of I H (j') 2 are

identified and used to form the polynomial H(s); i.e., if si, i = 1, 2, ... , M are the left-handed

poles, then

H(s) = co[(s - S)(S - S2) ... (S - SM)] -I. (5.4)

As noted in the previous section, CFMR was evaluated in Ref. 1 for the Butterworth filter. In addi-

tion it is shown that

c c H H 2 dw
-c IjW _ si12

7rcO

2

1

sin r (2i -
2M

(5.5)
1)

Thus by using Eq. (3.53) it follows that

IQMF = - sin - E csc (2i - 1),
2 2M i 1 2M

(5.6)

where csc () is the cosecant function.

We note that IQMF is a function of M so we denote it by IQMF (M) but not by N and BT,

whereas CFMR is a function of M, N, and BT which we denote by CFMR (M, N, BT). Thus

p(ave)/p = 2 CFMR(M, .- + IF(M
out in - IQ CM MN, BT) + IQMFl(M\IJ (5.7)

18
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POLE

UNIT CIRCLE

REAL

Fig. 7 - Pole plot of Butterworth filter of order 3

Plots of .5CFMR(MN,BT) are shown in Figs. 8 to 17 for various values of M, N, and BT (N
is an odd integer). In addition, for each set of plots, IQMF (M) is graphed. Note from these curves
that for N > 1,

1
IQMF(M) >> 2 CFMR(M, N, BT). (5.8)

Hence, the IQMF term is the dominant term of Eq. (5.7). As a result, we conclude that transversal
filter compensation has a small effect on improving cancellation when I and Q frequency mismatch
errors are present. This is discussed further in Section VII.

VI. PHASE AND AMPLITUDE QUADRATURE ERRORS

In this section a first order expression is derived for the inverse cancellation ratio (CR-1) as a
function of the phase and amplitude quadrature errors. Since it is demonstrated in the previous sec-
tion that transversal filter compensation is ineffective if there are LPF mismatches, only the case
when N = 1 is considered. As it is discussed in Section III, all the LPFs are assumed to be matched
and equal to H(jw).

For a single auxiliary canceller (N = 1), it can be shown that

out =1 - 1u2, (6.1)
Pin

where a is the normalized cross correlation between the main and auxiliary channels. More formally,
if xM and xA are the main and auxiliary inputs to the canceller, then

19
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Let 1(t) and Q(t) be the output of the LPFs if there were no phase or amplitude errors in the
model. Thus

I(t) = Xc i(T)h(t - T) dT (6.3)

and

cc

Q(t) = j ~q(Tr)h(t - r)dr-, (6.4)

where h(t) is the impulse response function associated with H(jw). Assume that i(t) and q(t) are
identically distributed independent zero mean unit variance white noise sources.
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Now assume that there are phase and amplitude quadrature
(and variables defined) shown in Fig. 5,

[ i' (t) 1 r
Lq M (t) L2 +

errors. Thus by using the model

E ef )j E2 T) 11 I(t)1
ElM) 1)(M) J Q 1 22(t (6.5)

(6.6)

where

A i 2 ()1 e)e() I 1( )1

| q'A (t) j = 
2 + L° o J L Q (t) 

XMl(t) = i "(t) + jq M(t)

and

(6.8)xA (t ) = i A (t ) + jq A (t) -

We compute x* xM by using Eq. (4.50) as

XMX = (1 + e + je~4.)) (1 + 41l) + (cE(M) + j(I + (E24))) (2•) -j).

It is straightforward to show that

IX*X 12 = 4 + E4(M)2 + E4(A)2 + IE2)2 + E1)2 + E2)2 + O(e, 0),

where 0 (e2, 0) indicates higher order terms or terms that go to zero when the
In similar fashion, it can be shown that

IXM 12 = 2 + E (M)2 + E42(1)2 + E4M)2 + E4M)2 + 0(e2, 0)

and

IXA 2 1 2 + E4A)2 + E(A)2 + 0 (e2 0).

expectation is taken.

(6.11)

(6.12)

Now

1 - I1e2 =
IXA 12 IXM 12 _ XAXM 1

I XA 12 1X 12

IXA 12 1XM 12 = 4 + A,

30
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where A<< 4. Thus the first order expression for the expected value of 1 - a I2 taken over the
phase and amplitude errors is given by

E[1 - (Ic2e = -E { IXAI X2 I - | _ XAl | 21. (6.15)
4 XX

By using Eqs. (6.10), (6.13), and Eq. (6.15) it can be shown that

{[1 -I C1 2 ] - E [EM) 2 + EM)2 + E21M)2 + E2(M)2 + E(A)2 + el 2 3. (6.16)
4

Expressions for the errors in terms of the phase and amplitude quadrature errors are given by
Eq. (2.2). If the small angle approximations are used that so that sin / = and cos 0 = 1 - .5,
and only first order terms are retained, then it can be shown that

E~4 I) 2 } = E E(Al)
2 } = E c(A) 21 = (6.17)

EcE2M1 )} = E (lE2)2} = EcE fA2 1 = 2 (6.18)

Thus the first order expression for the inverse cancellation ratio, assuming constant phase and
amplitude quadrature errors, is

p (ave) 2

Pi. = 4 (aU + or2) (6.19)

VII. DISCUSSION

By use of the results from Sections V and VI we calculate the first order expression for inverse
cancellation ratio with N = 1,

p (aye) 3'2 3 '2 2

CR-1 out = ' = 2 + '2+ 1hQ CFMR(M,1,BT) + IQMF(M) (7.1)

To make the transversal filtering effective (for N > 1), it is only necessary to adaptively weight
both the I and Q auxiliary channels separately as shown in Fig. 18 (this scheme is sometimes called
"real weight" cancellation or "IQ weight" cancellation). Here both of the auxiliary's I and Q chan-
nels are cancelled against the main's I and Q channel.

For the IQ weighting cancellation scheme, it is easily shown that the amplitude and phase
quadrature errors in the auxiliary channel can be eliminated since a 2N x 2N nonsingular matrix
exists that transforms the 2N auxiliary taps (I and Q) into 2N outputs that have no phase and ampli-
tude errors. By use of the IQ weighting scheme shown in Fig. 18, it is straightforward to show that
the first order inverse cancellation ratio for IQ weighting is given by

CRIb I = 2 CFMR(M,N,BT). (7.2)
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Fig. 18 -IQ weighting canceller

Plots of .SCFMR are given in Figs. 8 to 17. Reference 1 discusses in detail methodologies for
choosing optimal values of M, N, and BT under given constraints. Note that although using a single
adaptive transversal filter does not effectively compensate for the I,Q mismatches, it does compensate
for IF filter mismatches even though the I,Q detecter may be part of the receiver channels. In this
case, only the IF filter mismatches are equalized, not the I,Q LPF mismatches.

VIII. CASCADED IF/IQ FILTER CONSIDERATIONS

A receiver chain may have an IF section as shown in Fig. l(a) for tuning purposes and thus
inherent in its functioning is IF frequency filtering. In the previous section, we showed that I,Q
adaptive weighting is necessary to make transversal filtering effective. We now consider the inverse
CR that results from using I,Q weighting for when the input channels pass through mismatched IF
filters followed by (or cascaded with) one of the I,Q LPFs.

Figure 19 shows the channel model. We assume that the LPFs are designed to an ideal FTF,
HJQ (w), and that the IF filters are designed to HIF(jw). The rms errors for the pole positions of the
IF and IQ filters are given by alF and ujQ respectively. Let the bandwidth of the IF filter be BIF, and
let that of the IQ filter be BIQ. We define a parameter a to be the ratio of BIF to BQ, or

BIF (8.1)

BJQ

Note that 3 is always greater than one. Let MIF and MIQ be the number of poles and zeros in the IF
and IQ filters, respectively. Let si('F), i = 1, 2 , . .. , MIF and sj(IQ), i = 1, 2, . .. , MIQ be the
poles and zeroes of these filters. Assume that all poles have been normalized by 7rBJQ. For example,
if all the IQ poles are equal, then they all lie on the unit circle in the complex s-plane.
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Fig. 19 - Cascaded IF/IQ filter and canceller modeling

By using the separation principle described in Section III, we can show for the cascaded IF/IQ

filters that

CR - =a2 MIF cc I HIF I2 IQ 2 dw (.2)
CR'=a~i L~ 1..cc w - SiF) 2 (82

N N cc I HIF 2 2 H|Q 12 ej 2BIQT(N2-k) dw
- , F R 1(k'm __ jws(IF)
k=1 m=j jl S S

AIQ cc IHIF12 IHIQI 2 dw

k=1 ,iz=1 jwSi+0lTQ L 00 (IQ) 12

k - I m-1 J ° S S

CoX I HIF 1 2 I HIQ 1 I2 ej F2QQT(m 1N2)dw 11_ -jw=- (Q)* j
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where Rgkm) is the k,m element of the inverse of the matrix whose k,m element ROkm is defined by

ROkm = I I HIF 12 | HIQ 1e2 .eBb(k-m)dw (8.3)

We do not give any results that can be derived from this complicated expression other than to
point out that if f3 goes to infinity, it is straightforward to show that the multiplicative factor of crF
seen in Eq. (8.2) goes to zero. Hence if the IF filters are much more difficult to match over BJQ or
equivalently auF >> a1Q, then significantly widening the bandwidth of the IF filter can ameliorate the
effects of IF filter mismatch. For very wide IF bandwidths, if i>> 1, then the cascaded inverse
CR- 1 is determined only by the mismatches in the I,Q LPFs. Of course widening this bandwidth is
not without consequences. For example, by doing so the input noise power into the I,Q detectors is
increased so that the dynamic range of these detectors must be increased.

IX. SUMMARY

The effects of I and Q phase, amplitude, and LPF errors on adaptive cancellers were investi-
gated. I,Q errors occur because of errors in the synthesis process of the mixers and LPFs designed to
be identical for each input channel. These I,Q errors among the channels result in cancellation degra-
dation. Using a separation principle developed and discussed in the text, first order expressions for
cancellation degradation as a function of phase, amplitude quadrature errors, and LPF mismatches
were obtained. The separation principle was proved whereby we showed that a first order expression
for cancellation degradation can be computed that is the sum of the individual cancellation degrada-
tions each computed with respect to one given error. In effect, we set all errors equal to zero except
one when computing a given degradation.

Tapped delay line transversal filters have been proposed as a way to compensate for LPF fre-
quency mismatch and thus improve cancellation performance. However, it was shown that if there is
any LPF frequency mismatch, then transversal filtering has a small effect on improving canceller per-
formance. The method of individual I,Q adaptive transversal filter weighting was suggested as a
means of eliminating the phase and amplitude errors and of making the canceller performance respon-
sive to transversal filter compensation. In addition, the cancellation performance of cascaded
mismatched IF and I,Q filters was briefly considered.
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